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A method is presented for achieving a dramatic improvement in phase tracking of
square wave subcarriers or other square waves. The method is to set the amplitude of the
phase quadrature reference signal to zero except near the zero crossings of the input
signal. Without changing the loop bandwidth, the variance of the phase error can be
reduced to approximately Woj, where 03 is the phase error variance without windowing,
and W is the fraction of cycle in which the reference signal has a nonzero value. Simula-
tion results confirm the analysis and establish minimum W versus SNR. Typically, the
window can be made so narrow as to achieve a phase error variance of 1.5 ag.

I. Introduction

In deep space communications, the loss in data signal-to-
noise ratio due to phase tracking error is often more severe
for subcatrier tracking than for carrier tracking. This is because
the subcarriers are often square waves, and the carriers are
sinusoidal. The SNR loss varies approximately as the mean
square phase error for sinusoids, but only as the rms phase
error for square waves.

Subcarrier tracking loss is most significant in low-rate
telemetry systems where the subcarrier loop bandwidth cannot
be made narrow enough to reduce the rms phase error to a
small enough value. For example, the loss in average symbol
SNR for the Pioneer 10 spacecraft at a symbol SNR of 0 dB
with the narrowest bandwidth Block III or Block IV subcar-
rier demodulator assembly is 0.4 dB at 16 bps and 0.6 dB at
8 bps. The actual loss in decoder threshold is even greater, just
as radio loss is greater for coded than for-uncoded systems.

These losses motivated the analysis and simulation of the
improved subcarrier tracking method presented here. The

method is capable of reducing the loss in the average symbol
SNR (SSNR) to under 0.1 dB for the Pioneer example, with-
out reducing the loop bandwidth,

. Method and Performance

The improvement in subcarrier tracking is achieved by
windowing one of the subcarrier channel reference signals as
done in a Digital data Transition Tracking Loop (DTTL) bit
synchronizer (Ref. 1). A theoretical basis for this method was
presented by Layland (Ref. 2), who concluded that, for a
first order phase-locked loop and high loop SNR the optimum
reference signals needed to track square waves resemble
alternating trains of narrow pulses.

Figure 1 shows the windowed quadrature phase referencing
waveform and its relationship to the subcarrier and to the
standard reference waveform. Let W be the fraction of each
cycle of the reference signal which has nonzero value. The
reference signal looks like a square wave, multiplied by zero
except for the regions within plus or minus W/4 of the zero
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crossings as illustrated in Fig. 1. The theoretical improvement
in loop SNR is approximately a factor of 1/W, provided that
the phase error is small enough that the loop is in the linear
region. Based on simulation results, values of W from 1/16 to
1/64 appear practical in cases for which the loop SNR would
otherwise be low enough to cause significant symbol SNR
loss. This means that the loss can be reduced by a factor of
4 to 8. A 0.4 dB loss can be reduced to 0.05 dB, and a 0.6 dB
loss can be reduced to under 0.1 dB. These examples are
typical of Pioneer 10 at 0 dB SSNR and data rates of 16 bps
and 9 bps, respectively.

The implementation of the windowed reference signal is
remarkably simple. The waveform can be generated in a read
only memory (ROM) whose input address is the phase. The
only change from the full square wave case is to zero the
reference signal ROM for the appropriate regions of phase.
There is no change in the gain of the subcarrier phase detector
due to the windowing.

lll. Analysis

In this section we develop the equations that describe the
operation of the subcarrier loop, shown in Fig. 2. Using linear
analysis we compute analytically the variance of the phase
tracking error and validate our results with computer simula-
tions. Throughout- this article we neglect quantization errors,
nonzero data rise time, filtering distortions, etc. We also assume
that perfect symbol synchronization is available and has
already been established.

A. Phase Detector Model

The ith sample of the digitized subcarrier signal for the
DSN Advanced Receiver is assumed to be of the form (Ref. 3)

r,= P, d, Sin(8,)cos(p,)+n, (1)
where

P, = average data power (V2)

d,, = data value of kth binary symbol (£1 equally
probable)

Bin(x) = sgn (sin(x))

®.; = instantaneous phase carrier estimation error
(rad) assumed zero for the rest of the analysis.

n; = zero mean white Gaussian noise sample with
variance o2

8, = instantaneous subcarrier angle (rad)

104

At this point, it is convenient to introduce the variables

3i = closed loop estimate of 0, (rad)

¢, =0,~ @i = instantaneous subcarrier phase estimation
error of the ith sample (rad)

To facilitate the analysis, we assume that the subcarrier
period Ty, is related to the symbol duration Ty, by

Toym = nT,, for some integer n )

This circumvents modeling problems associated with “end”
effects, which greatly complicate the analysis and lie outside
the intended scope of the present discussion. We also postulate
that a large number of samples per symbol time are available.

The loop operates as follows (see Fig. 2): The digitized
incoming signal r; is mixed with the reference signals (with no
loss of generality we set the multiplier gains equal to one)

R,= 5in(8) (3)
R, = Tos(@) €

to produce the signals x; and y; respectively. These signals
are accumulated over the L samples during a symbol interval.
Assuming that the instantaneous phase errors of the samples
averaged over any particular symbol interval are equal, then
the accumulators have responses

Xk=dkLVPD(1"|uk|)+nxk, k=0,...

Y,=d LVPp v, +n,,  k=0,....M  (6)

where

=2l ), g l<n 7

and
uy, | ¢ | < W2
vy = sgn(dy )W, aW/2 < | ¢ | < w(1 - W/2)
2sgn(p) Uy, m1-WR)< ¢ | <n
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These last two equations describe the in-phase and quadrature
arms of the phase detector respectively. We show them graph-
ically in Fig. 3.

B. Phase Detector S Curve

The S curve is defined as the mean value of the error con-
trol signal conditioned on the phase error. The gain slope at
the origin of the S curve and the variance of the error control
signal are useful in evaluating the closed loop tracking perfor-
marnce.

In the following section we show that the S curve is given
by

S©,) =5 A-1U,D¥, ©)

which for convenience, we have normalized to have unity
slope at the origin. This is shown in Fig. 4 for different win-
dows. Notice that for small phase errors, the gain (slope) of
the S curve does not change due to the windowing. This has
the notable advantage from an implementation point of view
of maintaining constant phase detector gain as W is changed.
This simplifies implementation in which a wide W is used for
acquisition and a narrower W for tracking.

C. Phase Detector Variance

In order to assess the closed loop tracking performance, the
variance of the error control signal is needed. Due to the
orthogonal nature of the reference signals R, and RQ, the noise
processes {n, }and {u,,} are independent. Strictly speaking,
these are cyclostationary processes, but we approximate them
by stationary processes. In other words, their first and second
order statistics are obtained by time averaging (over just one
symbol interval for this case) their ensemble averages. With
this in mind, samples of these noise processes have zero mean
and variances

(10)

= 2
var.(n,, ) = L o,

(11)

= 2
var (nyk) = WL g,
"There is also self noise, whirc}; is neglected. This self noise is

the difference between the actual signal summed over the
actual samples, and the mean value which we have used.

The outputs of the in-phase and quadrature arm sumtners
are multiplied iogether and accumulated subsequently over M
symbols to produce the error control voltage that drives the
Costas loop. This signal is

e, =ML*P, (1-1U NV, +N, (12)

with U,, V,, being the time averages of u, and v, over M
samples respectively. It can be argued via the central limit
theorem that the noise samples A, are approximately Guas-
sian with zero mean and variance

2 = 42 3 2

0% = 02 P L3 MV?
2 3 2
+Wa P L2 M(1-1U, 1)

+Wan L2 M (13)

D. Linear Tracking in the Presence of Noise

When the loop is in the linear region, U, and V,, in Eqs. (12)
and (13) are close to zero and

2 2 3
Oy ~WanPDL M

+Woll?m 14)

If we assume that the noise samples V, are stationary, the
steady state variance of {¢n} is given by (Refs. 4 and 5)

R
2nj

R
HE@)H(E 1) z! © dz  (15)

1z|=1

2 -
%

where
Ry@) = Z {EN,N,,,)}

is the Z transform of the autocorrelation function of the noise
process at the input of the loop filter. The function H(z)
denotes the closed loop transfer function and A is the gain
of the control voltage signal (without noise) evaluated at zero
phase error, which is

=2 2
A==12MP, (17)

Since the samples {V } are uncorrelated, zero mean with
variance 01":,, then

= 2
RN(Z) = On (18)
SO
2B,T ¢?
A2

105




where

1 1 1

~1 d
L =9 g HEHEH 2 (20)

lz|=1

is the one-sided noise bandwidth of the loop, and T is the filter
update time related to the symbol duration by

T = MT 1)

sym

Substitution of Egs. (14) and (17) into Eq. (19) results in

2

2 n
ol = (22)
¢ 2p2
L*P2

)
2
25) we <1 +L)B T

If we assume that the received noise samples #; are obtained
by sampling white noise of one-sided spectral density V, ata
rate /T, then

N

0% = 27? (23)
§

Using this result, and the fact that

ES
P, = (24)
b Tsym
Tym = LT, (25)

E being the symbol energy, then the variance of the tracking
error can be put in the form

2 Bulom (1,1 (26)
E[N, 2E:c/No

g

-3

2
¢

Notice that windowing improves the loop SNR by a factor of
1/W. At first glance, it might appear (erroneously though) that
arbitrarily small windows can be selected to obtain any desired
performance. This is not so, since for very small windows,
linear theory is not valid, and the actual tracking variance is
much larger than that predicted by Eq. (26). This will be
quantified more precisely in the following section.
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IV. Simulation Results

Computer simulations were performed to validate the anal-
ysis and determine the range of usable values for the windows.
To perform the simulations, an equivalent PLL type model is
found first for the Costas loop. This resembles a standard PLL,
except that the sinusoidal nonlinearity is replaced by the nor-
malized phase detector characteristic given by Eq. (9).

In Fig. 4 we summarize the simulation results and also
include results dictated by linear analysis for several window
sizes. We do this by computing the variance of the phase
error using as parameters loop SNR’s when W= 1. Thus, when
W = 1 and loop SNR = 14 dB, the phase error variance is
approximately 0.04 rad?. By just narrowing the window, we
can lower the variance by a factor of roughly 16.

The most striking piece of information contained in Fig. 4
is that, given an initial tracking variance, say og, this variance
can be reduced conservatively to

(of)min = 1.5} 27

by selectifig the optimum window size whose value is approxi-
mately

W=05t1Xo (28)

V. SNR Loss Due to Phase Error and
Design Example

First we determine the average loss in symbol SNR (SSNR)
due to subcarrier phase error. Equation (5) represents the out-
put of the decision arm in the Costas loop. It is observed that
a subcarrier phase estimation error causes the signal voltage
term to be degraded by

_ 2
D—1-7|¢| (29)

The symbol signal to noise ratio (SSNR) is then degraded on
the average by the statistical expectation of the square of the
above term. If the loop SNR is high, then it is reasonable to
assume a Gaussian density function for the phase error. Carry-
ing out the details of the expectation leads to

Ep*) =1-2(2) o, (30)

where only first order terms were retained.




A design example is considered next: The average loss in
SSNR for the Pioneer 10 spacecraft at a coded symbol SNR of
0 dB with a two-sided design point bandwidth of 0.03 Hz and
a symbol rate of 33-1/3 sps is about 0.45 dB (see footnote 1),
If a narrower window is employed, this degradation can be
significantly reduced.

For the parameters previously mentioned, the initial
(W = 1) loop SNR is 27.8 dB. From the simulation results,

1“Deep Space Network/Flight Project Interface Design Handbook,”
JPL internal document 810-5, Rev. D, Vol. I, Module TLM-10,
p. 67, Jet Propulsion Laboratory, Pasadena, Calif.

it appears that a window of size W = 1/256 is feasible. If this
smaller time window is used, with the other parameters kept
constant, the average loss in SSNR can be reduced to 0.01 dB.

V1. Conclusions

A subcarrier Costas loop capable of tracking square waves
with less phase error has been described. By setting the quadra-
ture reference signal to zero at the appropriate phases, the
variance of the tracking phase error is reduced by a factor of
1/W under linearized conditions. Computer simulations
validate the previous statement, and give practical values for
W when the loop is not adequately described by linear theory.
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Fig. 1. Loop waveforms in the absence of noise. Continuous and perfect

subcarrier synchronization is assumed for pictorial representation.




Fig. 2.
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Block diagram of the all-digital subcarrler Costas loop incorporating a window
function in the quadrature reference signal
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Fig. 3. Phase detector characteristics of in-phase and
quadrature arms: (a) In-phase and (b) In-quadrature
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Fig. 5. Variance of the subcarrier phase estimation error as a function of window size
with loop SNR as a parameter



